

The Pros and Cons of Upgrading Fruits & Vegetables Wastes in the Biorefinery Framework Luís C. Duarte, Florbela Carvalheiro, Luísa B. Roseiro,

Ivone Torrado, Patrícia Moniz, Cristina Oliveira, Júnia Ferreira-Alves, Pedro Martins, ...

Laboratório Nacional de Energia e Geologia

National Laboratory for Energy and Geology

www.lneg.pt

ta Europeia

Código de Conduto para o Recrutame de Investigadores

Laboratório Nacional de Energia e Geologia

RH de Excelência em Investigação

Implementação dos Princípios da Carta Europeia do Investigador e do Código de Conduta para o Recrutamento de Investigadores.

Em 2010, o Laboratório Nacional de Energia e Geologia aderiu aos princípios da Carta Europeia do Investigador e Código de Conduta para o Recrutamento de Investigadores, em 2013 recebeu o Logo de Excelência em RH de Investigação.

Carta e Código do Investigador Europeu

Investigador Europeu

Profissionais que trabalham na conceção ou criação de novos conhecimentos, produtos, processos, métodos, sistemas e na gestão dos projetos. *Definição de investigador do Manual de Frascati.*

Investigação

A profissão de investigador abrange todas as pessoas envolvidas em I&D em qualquer fase da carreira e independentemente da categoria profissional.

Empregadores e Financiadores

- Condições de trabalho
- Estabilidade de emprego
- Financiamento e salários
- Desenvolvimento de carreira

Princípios Gerais do Investigador

- Liberdade de investigação
- Responsabilidade profissional
- Princípios éticos
- Deveres de orientação e gestão

www.lneg.pt

Information resources

<u>geoPortal LNEG</u>: National potential for the production of energy crops

Combining Geographical and Statistical Information resources

shutterstock.com · 165477674

Agricultural residues

Corn stover

Olive tree prunnings

Orchards prunnings

Agro-food industrial residues

Wine sector:

- Wine lees
- Grape pomace

Fruits and vegetables (F&V):

- ✓ Carob pulp
- ✓ Nuts shells
- ✓ Peach stones
- ✓ Tomato pomace

Olive oil industry ✓ Extracted Olive Pomace (EOP)

These Materials are not created equal!

- **Biological Nature**
- **Chemical Composition**
- **Structural differences**
- and many other factors

DO IMPACT SIGNIFICANTLY on the their upgrade potential

Extracted olive Pomace **Almond Shell**

Pine nut shell

Glucan
Klason Lignin
Total extratives

Hemicellulose
Ash
Others (by difference)

How to estimate the upgradeability of a given material?

What are the main restrictions to its use?

What are their Strengths, Weaknesses, Opportunities and Threats?

When can they be used?

There are no easy answers to these questions, and they are often dealt with in a rather subjective and non-systematical way

Biotechnology Journal

DOI 10.1002/biot.200700183

Biotechnol. J. 2007, 2, 1556-1563

Technical Report

Biotechnological valorization potential indicator for lignocellulosic materials

Luís C. Duarte, Maria P. Esteves, Florbela Carvalheiro and Francisco M. Gírio

INETI, Departamento de Biotecnologia, Lisboa, Portugal

Upgrade potential can be modeled as a function of 4 main criteria

4 Main Evaluation criteria

4 Main Evaluation criteria

4 Main Evaluation criteria

4 Main Evaluation criteria

Duarte et al 2007. Biotech. J. 2:1556-156

The BVPI Rating

Within each factor, the Lignocellulosic material under study is given a score (S_i) from

0 (Undesirable characteristic)

То

3 (Strong Positive Impact)

Biological and physico-chemical factors grid

Factors	Criterion	Score
	Herbaceous	3
Biological paturo	Softwoods	2
Biological Hature	Hardwoods	1
	Mix	0
	Mono-, disaccharides or starch	3
	Hemicellulose (C6)	2
Macromolecular composition	Hemicellulose (C5)	1
(main or relevant fraction)	Cellulose	1
	Protein/Other	0
	Lignin	0
	< 15	3
Water content	< 40	2
(%)	40-80	1
	> 80	0
	Soft and high density materials	3
Physical charactoristics	Soft and low density materials	2
ritysical characteristics	Hard and high density materials	1
	Hard and low density materials	0

Economical factors grid

Factors	Criterion	Score
	All year	3
Seasonality (available during)	< 9 months	2
Seasonality (available during)	< 6 months	1
	< 3 months	0
	< 0	3
Economic value (f/t)	0-40	2
	40-120	1
	> 120	0
	High	3
Market dependency	Medium	2
Market dependency	Low	1
	Null	0

Technological factors grid

Factors	Criterion	Score
	None	3
Currently applied	Energy	2
tochnology/dostination	Recycling/upgrade	1
technology/destination	Reutilization	0
	Industrial feedstock	0
	Mature	3
Development stage of the	Demonstration	2
Biorefinery processing technology	Development	1
	Null	0

Geographical factors Grid

Factors	Criterion	Score
Total available guantities	> 80 000,0	3
(current or potential)	< 80 000,0	2
(current or potential)	< 24 000,0	1
(t/year)	< 8 000,0	0
	> 80 000,0	3
Geographical concentration	< 80 000,0	2
(t / (year Region)	< 24 000,0	1
	< 8 000,0	0
Political or legal constrains	Compulsory/strongly supported	3
(Situation concerning	Supported/Subsidized	2
upgrading)	Neutral	1
	Prohibit	0

Geographical factors classification grid

Computation

$$BVPI = \sum_{i=1}^{i=12} S_i$$

No weighting

No scaling

36

The BVPI Evaluation results

Orde	er Material	Biological nature	Macromolecular composition	r Water content	Physical characteristics	Seasonality	Economic value	Market dependency	Current technology / / destination	Developmen stage of upgrade technology	^t Available quantities (actual)	Geographica concentration	al Political o ⁿ legal ⁿ constraint:	r BVPI s
1	Rice husks	3		3	2	3	2	3	3		2	2	1	26
2	Brewery's spent grain	3			2	3	2	3	3		3	2	1	25
3	Carob pulp	1	3	3	3	3	0	3	1		2	2	1	23
4	Tomato pomace	3			2	0	2	3	3		2	2		21
5	De-alcoholized grape bagasse	1			2	2	2	3	3		2	2		21
6	Extracted olive bagasse	1		3	3	3	2	0	2		2	2		21
7	Grape stalks	1		3	2		2	3	3			0	1	19
8	De-alcoholized wine lees	1		1	3	2	2	3	3			0	1	19
9	Pine nut shells	2		3		3	2	0	2					18
10	Rice bran	3	3	3	3	3	1		0	0	0	0	1	18
11	Rice middlings	3	3	3	3	3	1		0	0	0	0	1	18
12	Rice greens	3	3	3	3	3	1		0	0	0	0	1	18
13	Olive bagasse	1	0	1	2		2	3	0		3	2		17
14	Citrus peels	1	1	1	3	1	2	2	1	2	1	1		17
15	Grape seeds	1	0	3	2	2	2	3	0		0	1	1	16
16	Malt dust	3	0	3	3	3	1		0		0	0	1	16
17	Almond shells	1		3		3	2	0	2		0	0	1	15
18	Nuts shells	1		3		3	2	0	2		0	0	1	15
19	Fruit pulp	1			3		2	2		2	0	0	1	15
20	Malt culms	3	0	3	3	3	0	1	0		0	0	1	15
21	Grape bagasse	1	0	1	2		0	0	0		3		0	10
22	Wine lees	1	0	1	2		0	0	0		3		0	10

Main advantages:

- No significat Seasonality
- Quantities: Ok

Main restrictions:

- Macromolecular composition,
- Underdevelop Technology,
- Lack of national political support

The BVPI Analysis

The "ideal" feedstock: Carob Pulp

Price...

- High (40-50%) sugar (Sucrose, Fru and Glc) content
- Significant amountSD: >> 40.000.000 kg/yr
- Highly geographically concentrated (Algarve)
- No seasonality problems (easy storage)
- Favorable policies (carob plantation is being subsidized)

ValorAlfa Valorization Strategy

UPCYCLED FOOD Definition

"Upcycled foods use ingredients that otherwise would not have gone to human consumption, are procured and produced using verifiable supply chains, and have a positive impact on the environment."

Upcycled products prevent food waste by creating New, High Quality Products out of surplus food.

UPCYCLED FOOD Elements

1. Upcycled foods are made from ingredients that would otherwise have ended up in a food waste destination

- 2. Upcycled foods are value-added products
- 3. Upcycled foods are for human consumption
- 4. Upcycled foods have an auditable supply

chain

5. Upcycled foods indicate which ingredients are upcycled on their labels

Recalcitrant (non-edible) materials

Fractionation process options

Biomass deconstruction/ Fractionation Processes

Mechanical	Chemical	Physicochemical	Biological
Grinding Milling Super fine milling Freezing Radiation Extrusion Ultrasonication	Acid Alkaline Inorganic salts Organosolv Ionic liquids Ozonolysis Deep eutectic solvents	Steam explosion Liquid hot water Ammonia fiber explosion Wet oxidation CO2 explosion	Microorganisms Fungi bacteria Enzymes

Fractionation process options

Liquid hot water: Fractionation and upgrading step

Modeling and Analysis

Techno-economic and life-cycle assessments of small-scale biorefineries for isobutene and xylo-oligosaccharides production: a comparative study in Portugal and Chile

(Xylo-) Oligosacharides

XOS

- Functional food ingredients recognized by FDA (2019)
- High Market Value
- But still low market demand

Waste Management 119 (2021) 306-314

Assessment of the effect of autohydrolysis treatment in banana's pseudostem pulp

Sara Díaz^a, Zaida Ortega^a, Antonio N. Benítez^a, Diogo Costa^b, Florbela Carvalheiro^b, Maria C. Fernandes^{c,d}, Luís C. Duarte^{b,*}

s Conversion and Biorefinery ps://doi.org/10.1007/s13399-023-05244-z

ORIGINAL ARTICLE

Microwave-assisted hydrothermal processing of pine nut shells for oligosaccharide production

Ivone Torrado^{1,2,3}0 · Beatriz Guapo Neves¹ · Maria da Conceição Fernandes^{1,4} · Florbela Carvalheiro³ · Helena Pereira² · Luís C. Duarte³

Monosaccharides and Polyols as pivotal biorefinery products

Combination of Autohydrolysis and Catalytic Hydrolysis of Biomass for the Production of Hemicellulose Oligosaccharides and Sugars

Léa Vilcocq 1,*, Agnès Crepet ², Patrick Jame ³, Florbela Carvalheiro ⁴[©] and Luis C. Duarte ⁴[©]

fermentation

MDPI

MDPI

Article

Xylitol Production by Debaryomyces hansenii in Extracted Olive Pomace Dilute-Acid Hydrolysate

Ana Rita C. Morais¹, Luís C. Duarte¹, Pedro Lourenco², Ivone Torrado¹, Teresa Brás^{3,4}, Luísa A. Neves⁵ and Florbela Carvalheiro 1,*[]

- BVPI can be a useful tool to ascertain the upgrade potential of a give material
- might be useful starting point for the development of more robust classification criteria for food waste products
- Biorefinery concepts are useful for the upgrade of food waste materials and to enable their maintenance/upscale as food products

- Dr Sara Díaz
- Dr Pedro Branco
- Dr Rita Morais
- Dr Teresa Brás
- Dr Pedro Lourenço
- Dr Helena Pereira
- Dr Bartha Sandor
- Dr Tiago Lopes
- **Diogo Costa**
- Bruno Sampaio
- Gabriel Mota Ribeiro
- Mafalda Batalha
- Inês César
- João Fialho
- Céu Penedo
- **Belina Ribeiro**

CONVERTE POTENCIAL BIOMÁSSICO PARA ENERGIA

Cofinanciado por:

Fundação para a Ciência e a Tecnologia

Thank you for your attention Image: S-CLAB lberoamerican Congress + Image: Image: S-CLAB lberoamerican Congress + Image: Imag

 \leftarrow

https://www.5ciab.es

X