

oodWaSto

Innovative Sustainable technologies TO extend the shelf-life of Perishable MEDiterranean fresh fruit, vegetables and aromatic plants and to reduce WASTE

POSTHARVEST ANCONA 2024 INNOVATIONS IN FOOD LOSS AND WASTE MANAGEMENT

Aula Magna - Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Ancona

January 23, 2024

INTEGRATED ALTERNATIVE CONTROL MEANS AGAINST POSTHARVEST DISEASES OF

POMEGRANATES AND

CITRUS FRUIT

Annamaria Mincuzzi, Antonio Ippolito

Di.S.S.P.A. – Università degli Studi di Bari Aldo Moro - annamaria.mincuzzi@uniba.it

WORK PACKAGE 1: Use of physical means to extend shelf-life of fruit, vegetables, and aromatic plants, and reduce waste

TASK 1.1 Application of <u>electrolysed water</u> to citrus and pomegranate fruit **TASK 1.2** Application of <u>ozone</u> to citrus and pomegranate fruit

Lead beneficiary: DI.S.S.P.A. – University of Bari Aldo Moro - UNIBA

Prof. Antonio Ippolito Dr. Annamaria Mincuzzi

<u>CITRUS</u>: POSTHARVEST DISEASES

Francesca Garganese - Di.S.S.P.A. – Università degli Studi di Bari Aldo Moro

BROWN SPOT *Alternaria* spp.

GREEN/BLUE MOLD *Penicillium* spp.

Production chain: incidence about yield losses are not up-dated **ANTHRACNOSE** *Colletotrichum* spp.

POMEGRANATES: PREVIOUS TRIALS

1. <u>Phytotoxicity tests</u>:

- Potassium sorbate
- Sodium bicarbonate
- Sodium metabisulfite
- Calcium propionate

NEUTRAL ELECTROLYZED WATER (NEW)

- **Gaseous ozone** (various concentrations and exposure timings)
- Ozonated water

2. In the field treatments:

F1. Red seaweed fertilizer(commercial product)

F2. *Aureobasidium pullulans* (DSM 14940 and DSM 14941 strains, commercial product)

F3. *Bacillus amyloliquefaciens* subs. *plantarum* (strain D747, commercial product).

F4. Hydrochloride chitosan (commercial product)

Potassium sorbate, sodium bicarbonate, and sodium metabisulfite phytotoxicity at 1.25%

POMEGRANATES: PREVIOUS TRIALS

3. <u>Dipping</u>:

- **D1**. Ozonized H₂O
- **D2.** Neutral Electrolyzed H₂O (**NEW**)
- **D3.** NEW + 0.625% sodium metabisulfite
- **D4.** NEW + 0.625% potassium sorbate
- **D5.** NEW + 0.625% sodium bicarbonate

D6. NEW + 0.625% calcium propionate

4. <u>Gaseous O₃ shock treatments</u>:

- 750 ppb
- **4 h** exposure time

G1. 1 treatment per **month** every $30 \text{ days} \rightarrow 3$ treatments.

G2. 2 treatments per **month** every <u>15 days</u> \rightarrow **6** treatments.

G3. **4** treatments per month every $7 \text{ days} \rightarrow 12$ treatments.

POMEGRANATES: INTEGRATED APPROACH

- PREHARVEST TRIAL: Bacillus amyloliquefaciens subs. plantarum
 - 2 application during the **blooming stage** (BA-2)
 - 4 application during the **blooming stage** + 1 just before harvest (BA-5)
- 4 months of cold storage + 2 weeks of shelf life

Destharvest trial:

Dipping

```
NEW + 0.625% calcium propionate (CP)
```

Gaseous ozone treatment

750 ppb O₃ x **4 h** exposure time. **4 treatments/month (03)**

- **EVALUATION OF DECAY INCIDENCE AND SEVERITY**
- **EPIPHYTIC POPULATION**
- **QUALITATIVE ANALYSES** (color, pH, TSS, TA)

THESES	IN THE FIELD	NEW POSTHARVEST DIPPING	Postharvest gaseous O ₃
1		Calcium propionate	0 ₃ exposure
2	Water control		No 0 ₃
3		Water control	0 ₃ exposure
4			No 0 ₃
5	Amylo-X5	Calcium propionate	0 ₃ exposure
6			No 0 ₃
7			0 ₃ exposure
8		water control	No 0 ₃
9		Calcium propionate	0 ₃ exposure
10	Amylo-X2		No 0 ₃
11		Water central	0 ₃ exposure
12			No 0 ₃

Factorial ANOVA

5. **POMEGRANATES:** INTEGRATED APPROACH

EPIPHYTIC POPULATION

BA-5 = B. amyloliquefaciens/ 5 treatments
BA-2 = B. amyloliquefaciens/ 2 treatments
CP = NEW+Calcium propionate/postharvest dipping
O3 = gaseous ozone/exposure

No significant differences

CP = NEW+Calcium propionate/postharvest

O3 = gaseous ozone/exposure

dipping

а

No O3

POMEGRANATES: INTEGRATED APPROACH 5. **DISEASE INCIDENCE** AFTER **4 MONTHS** OF **COLD-STORAGE**

60

50

40

30

20 10 0

а

03

b

СР

Incidence •

5. **<u>Pomegranates</u>**: INTEGRATED APPROACH

DISEASE INCIDENCE AFTER 4 MONTHS OF COLD-STORAGE AND 2 WEEKS OF SHELF-LIFE

Pomegranate shelf-life

- Incidence
- Severity

BA-5 = *B. amyloliquefaciens*/ 5 treatments **BA-2** = *B. amyloliquefaciens*/ 2 treatments **CP** = NEW+Calcium propionate/postharvest dipping

O3 = gaseous ozone/exposure

Pomegranate shelf-life Ozone

5. **<u>Pomegranates</u>**: INTEGRATED APPROACH

NESTING INCIDENCE AFTER 4 MONTHS OF COLD-STORAGE AND 2 WEEKS OF SHELF-LIFE

POMEGRANATES 2021: IN THE FIELD TRIAL

POMEGRANATES 2021: POSTHARVEST TRIAL

previously <u>confirmed</u> by dipping trial with <u>cracked</u> <u>fruit</u> To **prolong shelf-life** of second-class pomegranates

Effectiveness of CP

5. **POMEGRANATES:** INTEGRATED APPROACH QUALITY PARAMETERS: COLOR ASSESSMENT

Before postharvest treatments

- Water control
- 🧧 B. amyloliquefaciens x 2
- B. amyloliquefaciens x 4 + 1

5. **POMEGRANATES:** INTEGRATED APPROACH QUALITY PARAMETERS: COLOR ASSESSMENT

2 months of cold-storage

5. **POMEGRANATES:** INTEGRATED APPROACH QUALITY PARAMETERS: COLOR ASSESSMENT

4 months of cold-storage

soluble solids (TSS)

WOUN

<u>CITRUS</u>: POSTHARVEST TRIALS

- 1) <u>In vitro</u>: conidial survival of *Penicillium digitatum* and *Penicillium italicum*:
 - continuous exposure
 - 1-min exposure
 - *In vivo*: injured citrus (mandalate [Fortune mandarin (2x) × Avana mandarin (4x)]):
 - continuous ozone
 - 3 gaseous ozone concentration (250, 500, 750 ppb)
 - 4 time of exposure (3, 6, 9, 12 h)
 - 3) <u>In vivo</u>: injured citrus (Navelina): SEMI-COMMERCIAL SCALE
 3 ozone treatments/day
 7 g/h O₃
 - 4) <u>In vivo</u>: injured citrus (clementines):
 NEW amended with 0.625% calcium propionate
 - *5) In vivo*: **injured citrus** (Femminello): **INTEGRATED APPROACH**

5. **CITRUS:** INTEGRATED APPROACH

best treatments

In vivo: **injured citrus** ('Femminello' lemon):

- Dipping
- **1)** H_20 with/without O_3
- 2) Imazalil with/without O₃
- **3)** 0.625% calcium propionate with/without O₃
- 4) NEW + 0.625% calcium propionate with/without O_3
- **5)** 0.625% sodium bicarbonate with/without O₃
- 6) NEW + 0.625% sodium bicarbonate with/without O_3
- Gaseous ozone treatment
- 750 ppb O₃ x 3h exposure time
- Daily treatment (7 treat./week).
- EVALUATION OF DECAY INCIDENCE AND SEVERITY
 QUALITATIVE ANALYSES (color, pH, TSS, TA)

THESES	POSTHARVEST DIPPING	POSTHARVEST GASEOUS O ₃
T1.1	Calcium propionate	No O ₃
T2.1	Calcium propionate	O ₃ exposure
T1.2		No O ₃
T2.2	NEW + calcium propionate	O ₃ exposure
T1.3	Sadium biaanbanata	No O ₃
T2.3	Sourum bicarbonate	O ₃ exposure
T1.4		No O ₃
T2.4	NEW + sodium dicardonate	O ₃ exposure
T1.5	Watar	No O ₃
T2.5	water	O ₃ exposure
T1.6	Imazalil	No O ₃
T2.6		O ₃ exposure

Factorial ANOVA

Rot incidence and

5. CITRUS: INTEGRATED APPROACH DISEASE INCIDENCE AFTER 2 WEEKS OF COLD-STORAGE

5. **CITRUS:** INTEGRATED APPROACH

DISEASE INCIDENCE AFTER 2 WEEKS OF COLD-STORAGE AND 3 DAYS OF SHELF-LIFE

- **NEW + SB** reduced by **91-96%** disease incidence and severity
- Ozone reduced by
 72-83% disease incidence and severity
 - CP = Calcium propionate/postharvest
 dipping
 SB = Sodium bicarbonate/postharvest
 dipping
 NEW = Neutral Electrolyzed Water
 - IZ = Imazalil//postharvest dipping
 - **O3** = gaseous ozone/exposure

<u>CITRUS</u>: POSTHARVEST TRIALS

3. *In vivo*: **injured citrus** (Navelina): **SEMI-COMMERCIAL SCALE**

Effectiveness of ozone previously <u>confirmed</u> in the **semi-commercial scale trial**

O3 = gaseous ozone/exposure

Control

5. **CITRUS:** INTEGRATED APPROACH

	THESES	POSTHARVEST DIPPING	POSTHARVEST GASEOUS O ₃
	T1.1	Calaium province to	No O ₃
)	T2.1	Calcium propionate	O ₃ exposure
\mathcal{D}	T1.2		No O ₃
\mathbb{D}	T2.2	NEW + calcium propionate	O ₃ exposure
\mathbb{D}	T1.3	Codinum bioonbourge	No O ₃
\mathcal{D}	T2.3	Sodium dicardonate	O ₃ exposure
\mathbb{D}	T1.4		No O ₃
)	T2.4	NEW + sodium dicardonate	O ₃ exposure
	T1.5	W-4	No O ₃
\mathbf{D}	T2.5	water	O ₃ exposure
	T1.6	Imazalil	No O ₃
Ď	T2.6		O ₃ exposure

○ Standard values

Steady values over time and among treatments like pH, titratable acidity (TA), and total soluble solids (TSS)

INTEGRATED APPROACH

I. In the field treatmentsII. Postharvest treatments

I. Latent pathogensII. Wound pathogens

WASTE REDUCTION

DETAILING...

- **1.** *B. amyloliquefaciens* and NEW + Calcium propionate
- 2. NEW + Sodium bicarbonate and gaseous ozone

1. Pomegranate postharvest diseases

Citrus postharvest diseases

