A gene-editing approach to improve tomato shelf-life while ensuring fruit quality

INNOVATIONS IN FOOD LOSS AND WASTE MANAGEMENT COST FoodWaStop Ancona 24-25 January 2024

Bárbara Blanco-Ulate

Associate Professor – Department of Plant Sciences Co-Director - UC Postharvest Research and Extension Center University of California, Davis

College of Agricultural and Environmental Sciences

POSTHARVEST RESEARCH AND EXTENSION CENTER

https://postharvest.ucdavis.edu

Over 45 years supporting California and the international produce industry through education and extension

The **Postharvest Center Goal**: increasing the economical sustainability of producers, reducing postharvest food losses, and providing high quality, safe and nutritious produce to consumers.

Co-Directors

Bárbara Blanco-Ulate Associate Professor - Plant Sciences Irwin R. Donis-González

Associate Professor of CE -Biological and Agricultural Engineering

Scan me to join the newsletter!

Fruit Biology & Quality

Our team studies **fruit biology** to develop new strategies for improving the **availability**, **quality**, and **marketability** of fruit products

TomatoTable grapeStrawberryBerriesPistachioOliveStone fruitApple...CitrusCitrus

Citrus Melon Fruit-Pathogen

Interactions

Approaches

Field trials

Biochemistry

Big Challenges in Postharvest Opportunities for Research and Innovation

Improve and maintain crop quality

Fresh, nutritious, safe, and affordable food are not always available

Reduce crop losses and waste

40-50% of fruits and vegetables are lost after harvest

Fruit Gain Quality During Ripening

Fruit Quality Traits

Adaskaveg & Blanco-Ulate. 2022. *Curr Opin Biotechnol*

Fruit Ripening Regulators and Pathways

Fruit Ripening Regulators and Pathways

starch degradation, sugar transport, VOC metabolism, CW dissasembly...

Fruit Softening is A Ripening Event Associated with Quality

Uluisik et al. 2016. Nature Biotechnol.

Transmission electron micrographs of cell junctions from the pericarp

PCW, Primary Cell Wall **TCJ**, Tricellular junction **ML**, Middle lamella

Transmission electron micrographs of cell junctions from the pericarp

Pectin localization and distribution are altered in CRISPR PL lines

Immunolocalization of pectin-associated β-galactan CRISPR CRISPR WT ΡL PG

PCW, Primary Cell Wall **TCJ**, Tricellular junction **ML**, Middle lamella

Cell Wall Integrity in Fruit-Pathogen Interactions

Wang et al. 2022. Ann. Plant Reviews

SIPL is a Major Susceptibility Factor for Fruit Rotting

Double CRISPR PGPL shows no differences in sugar:acid ratio to the WT

Taste related attributes

Line	Total Soluble Solids (%Brix)	рН	Titratable Acidity (%)	TSS: TA
WT	6.23 a	4.49 a	0.50 a	12.55 a
CRISPR PG	6.27 a	4.58 a	0.47 a	13.58 a
CRISPR PL	6.48 a	4.50 a	0.50 a	12.96 a
CRISPR PGPL	6.39 a	4.46 a	0.51 a	12.57 a

Double CRISPR PGPL shows an additive phenotype in firmness

Double CRISPR PGPL shows an additive phenotype in firmness

Double CRISPR PGPL has more volatiles than the single CRISPR lines and the WT

Volatiles more abundant in the CRISPR PGPL fruit

heptanal 3-methyl-2-butenal 2- hexenal, benzaldehyde trans-beta-ionone 2-pentenal trans-2-heptenal 2,4-heptadienal benzeneacetaldehyde methyl salicylate

dph = days posthavest

Double CRISPR PGPL and single CRISPR PL have improved shelf-life

_a'

а

b

C

а

ab

b b

16

a

b

CRISPR PL

CRISPR PGPL

ab

12

dph

b

dph = days posthavest

- Double CRISPR PGPL shows longer shelf-life than WT and single CRISPR PL or PG
- No impacts on flavor attributes in the double CRISPR on flavor

	Disease incidence (%)		
Line	1 dpi	2 dpi	3 dpi
WT	3.76 b	82.58 <i>a</i>	88.61 <i>a</i>
CRISPR PG	11.88 <i>a</i>	85.86 <i>a</i>	89.09 <i>a</i>
CRISPR PL	3.25 b	53.48 b	63.62 b
CRISPR PGPL	6.51 <i>b</i>	52.51 b	65.95 b

Double CRISPR PGPL and single CRISPR PL have the same improved fruit resistance to fungal infections

Ortega-Salazar et al. 2023. PPP

Potential Benefits to Processing Tomato Quality

Tomato processing quality traits

- ✓ Consistency (Viscosity)
- ✓ Extended Field Harvest
- ✓ Color
- ✓ Total soluble solids
- \checkmark Titratable acidity and pH
- **X Mold presence**

A gene-editing approach to improve tomato shelf-life while ensuring fruit quality

INNOVATIONS IN FOOD LOSS AND WASTE MANAGEMENT COST FoodWaStop Ancona 24-25 January 2024

Bárbara Blanco-Ulate

Associate Professor – Department of Plant Sciences Co-Director - UC Postharvest Research and Extension Center University of California, Davis

College of Agricultural and Environmental Sciences