

Instituto de Ciencias de la Vid y del Vino Cost

Gobierno de La Rioja

UNIVERSIDAD

Fungal trunk diseases: a global threat to grapevine health

David Gramaje

FoodWaStop COST Action Meeting, Ancona 24-25 February 2024

Fungal grapevine trunk diseases: external symptoms

Fungal grapevine trunk diseases: internal symptoms

Economic impact

Australia: losses of 1,500 kg/ha in 47% Syrah due to Eutypa dieback (AU\$ 2,800/ha) (Wicks and Davies, 1999)

California: Botryosphaeria and Eutypa diebacks (\$USD 260 M/year) (Siebert, 2001)

France: 12% of affected vineyards (1 billion €/year) (Lorch, 2014)

Replant: Tempranillo in La Rioja

Martínez-Diz et al. (2019) Sci. Hortic. 246:104-109

The disease currently known as esca may be as old as vine cultivation (Mugnai et al. 1999)

Increase of GTDs incidence worldwide

Grapevine planting 'boom' experienced during the 1990s:

- ✓ Increasing movement of potentially contaminated propagated material
- ✓ Increasing area of vineyard reaching an age where symptoms are expressed and therefore becoming more visually prevalent

Increase of GTDs incidence worldwide

Grapevine planting 'boom' experienced during the 1990s:

- ✓ Increasing movement of potentially contaminated propagated material
- ✓ Increasing area of vineyard reaching an age where symptoms are expressed and therefore becoming more visually prevalent

Drastic changes in production methods that have favoured fungal infection.

Traditional low-density head trained (bush vines)

High-density spur pruned trellis vineyards

Increase of GTDs incidence worldwide

Grapevine planting 'boom' experienced during the 1990s:

- ✓ Increasing movement of potentially contaminated propagated material
- ✓ Increasing area of vineyard reaching an age where symptoms are expressed and therefore becoming more visually prevalent

2 Drastic changes in production methods that have favoured fungal infection.

3 The phasing out in some countries of sodium arsenite, benzimidazole fungicides, and methyl bromide in the early 2000s due to environmental and public health concerns (EPA 1997; Decoin 2001)

Complexity of this pathosystem

Many fungal species associated with GTDs symptoms 135 species – 35 genera

Mature vineyard

Complexity of this pathosystem

Many fungal species associated with GTDs symptoms 135 species – 35 genera

2 Fungi with different biology and epidemiology

Complexity of this pathosystem

Many fungal species associated with GTDs symptoms 135 species – 35 genera

2 Fungi with different biology and epidemiology

3 No curative measures are known for control of GTD

INTEGRATED DISEASE MANAGEMENT STRATEGY

Integrated management strategy

Nursery mother blocks

Propagation processes

Nursery field

Newly established vineyards

Mature vineyards

Integrated management strategy

Newly established vineyards

Mature vineyards

NURSERIES ARE SOURCES OF DISEASED MATERIAL 1 Nurseries are favorable for fungal trunk pathogens

Gramaje and Armengol 2011. Plant Disease 95

NURSERIES ARE SOURCES OF DISEASED MATERIAL

2 Practices increase infection risk

NURSERIES ARE SOURCES OF DISEASED MATERIAL 3 Diseased plants are difficult to detect

External symptomless plants

Latent pathogens: asymptomatic tissues Pathogenic: biotic and/or abiotic stress factors

Hrycan et al. 2020 Phytopath. Mediterr. 59

Propagation processes in the nursery

CHEMICAL CONTROL

BIOLOGICAL CONTROL

Trichoderma atroviride SC1 (Vintec®)

Pertot et al. 2016. BioControl 61 Berbegal et al. 2019. Pest Manag. Sci.

Bacillus subtilis PTA-271

Leal et al. 2023. Pest Manag. Sci. 79

HOT-WATER TREATMENT (HWT)

Standard treatment: 50°C – 30 min. Several pests and diseases: Phytoplasma organisms.

- Some *Vitis vinifera* varieties are more sensitive to HWT than others (Waite et al. 2001)
- Tolerance of plants to HWT is affected by the climate in which the cuttings are grown
- **3** HWT is not completely effective in eliminating fungal trunk disease pathogens growth

Disease resistance

ROOTSTOCKS

New Zealand

Jaspers et al. 2007; Billones-Baaijens et al. 2014 Spain Alaniz et al. 2010; Gramaje et al. 2010 U.S.A

Eskalen et al. 2001; Gubler et al. 2004

None of the rootstocks tested have shown complete resistance to black-foot and Petri disease pathogens

CULTIVARS

There is a relationship between the mean diameter of the xylem and susceptibility to infection

Table 1 | Mean of equivalent vessel diameter measured in 1 years old stems of *V. vinifera* cvs. Merlot, Cabernet Sauvignon, and Thompson Seedless.

Merlot	Cabernet Sauvignon	Thompson Seedless
Low	Medium	High
$90.7\pm5.8~\text{a}$	$99.9\pm7.1~\mathrm{b}$	$106.9\pm6.3~\mathrm{c}$
	Meriot Low 90.7 ± 5.8 a	Merlot Cabernet Sauvignon Low Medium 90.7 ± 5.8 a 99.9 ± 7.1 b

Pouzoulet et al. 2014 Frontiers Plant Sci. 5

Travadon et al. 2013 Plant Dis. 97

Integrated management strategy

Nursery mother blocks

Propagation processes

Nursery field

Newly established vineyards

Mature vineyards

PREPLANTING TREATMENTS: Biological control agents (BCA)

Investigation of *Trichoderma* species colonization of nursery grapevines for improved management of black foot disease

o sci

Wynand J van Jaarsveld,^{a,b} Francois Halleen,^{a,b} • Michael C Bester,^a Romain JG Pierron,^c Elodie Stempien^a and Lizel Mostert^{a*}^o

Field evaluation of biocontrol agents against black-foot and Petri diseases of grapevine

María del Pilar Martínez-Diz,^{a,b} Emilia Díaz-Losada,^a Marcos Andrés-Sodupe,^c Rebeca Bujanda,^c María M Maldonado-González,^c Sonia Ojeda,^c Amira Yacoub,^d Patrice Rey^d and David Gramaje^{c*}

horticulturae

Does Inoculation with Arbuscular Mycorrhizal Fungi **Reduce Trunk Disease in Grapevine Rootstocks?**

Taylor Holland ¹, Patricia Bowen ², Vasilis Kokkoris ¹⁽⁰⁾, Jose Ramon Urbez-Torres ² and Miranda Hart 1,*

Peer

Commercial arbuscular mycorrhizal fungal inoculant failed to establish in a vineyard despite priority advantage

Corrina Thomsen¹, Laura Loverock¹, Vasilis Kokkoris^{2,4}, Taylor Holland¹, Patricia A. Bowen³ and Miranda Hart¹

Performance and Establishment of a Commercial Mycorrhizal Inoculant in Viticulture

Daniel Rosa ^{1,*}, Antreas Pogiatzis ¹, Pat Bowen ², Vasilis Kokkoris ³, Andrew Richards ^{1,*}, Taylor Holland¹ and Miranda Hart¹

Integrated management strategy

Propagation processes

Newly established vineyards

Mature vineyards

Botryosphaeria dieback

Mother plants & mature vineyards

Cultural practices and sanitation: removal of dead wood or pruning debris

BURNING

MULCHING

GRIND AND COVER

500 µm

COMPOSTING

140 m³ of plant material (pruning debris)
+
125 m³ of sheep manure

60 m³ of garden residues

Year 2

40-50 °C (75°C)

Botryosphaeriaceae spp. (60 % - 0%) *P. chlamydospora* (93% - 0%) *P. minimum* (50% - 0%)

Botryosphaeria dieback

Botryosphaeria dieback

Fungal Ecology

symptom

Diatrypaceae species overlap between vineyards and natural ecosystems in South Africa

P. Moyo^a, L. Mostert^a, F. Halleen^{a, b, *}

2019 Spore

Plant Pathology

Fungal trunk diseases: a problem beyond grapevines?

D. Gramaje^a*, K. Baumgartner^b, F. Halleen^{cd}, L. Mostert^d, M. R. Sosnowski^e, J. R. Úrbez-Torres^f and J. Armengol^g

2016

Infection through wounds runing, crop management and natura

Walnut

Pear

Conidia/ascospores dispersal Rain, wind, arthropods

Fruiting bodies formation Pycnidia, pseudothecia

Botryosphaeria dieback

Winter pruning

Diatrypaceae spp. Botryosphaeriaceae spp. Basidiomycetes Phaeomoniella chlamydospora Phaeoacremonium spp.

Most effective: Mastic/paste + fungicides

CHEMICAL CONTROL

Alternative

Trichoderma spp.

In general, BCA have shown variable results for preventing infection by GTD pathogens

New perspectives for disease management

- Cultural practices
- Biological Control (fungi, bacteria, yeasts and oomycetes)
- Biostimulants
- Resistance inducers (elicitors)
- Biofumigation
- Nanomaterials
- Ozonated water
- Electrolyzed acid water
- Natural compounds (plant extracts)

New perspectives for disease management

GREENVITISV: NATURAL BIOACTIVE EXTRACTS FROM AGRIFOOD BYPRODUCTS AS CIRCULAR GREEN SOLUTIONS FOR A ZERO WASTE APPROACH IN THE AGRICULTURAL SECTOR

D. Gramaje, C. Leal, R. Bujanda, R. Facorro, L. Rubio, A. Castillo, M. Lores, E. Díaz-Losada, E.P. Pérez-Álvarez, T. Garde-Cerdán

The GREENVITISV project aims to produce eco-friendly products from grape pomace, such as phytosanitary pesticides to combat the primary fungal and oomycete diseases affecting grapevines. Additionally, it seeks to develop antioxidant-preservative alternatives to SO2 in winemaking, thereby promoting a sustainable circular economy.

O Instituto de

Ciencias de la Vid y del Vino

Gobierno de La Rioja

UNIVERSIDAD DE LA RIOJA

Thanks for your attention!

David Gramaje

david.gramaje@icvv.es

