

Efficacy of antagonistic yeasts to control brown rot of nectarines and effect on the fruit microbiome

<u>Giulia Remolif</u>, Marco Garello, Davide Spadaro

Dept. Agricultural, Forest and Food Sciences University of Turin

Brown rot of peaches and nectarines

- ullet

• One of the main diseases affecting peaches and nectarines

Important production losses, especially in post-harvest

Causal agents

Monilinia fructicola, M. laxa, M. fructigena

Disease management

Preventive treatments with synthetic fungicides

European Commission From Farm to Fork: Our food, our health, our planet, our future The European Green Deal May 2020 #EUGreenDeal

Moving towards a more healthy and sustainable EU food system, a corner stone of the European Green Deal

Need for alternative solutions

Presence of residues on the fruits **Environmental pollution** Fungicide-resistant strains

Farm-To-Fork Strategy

- 50% use of synthetic pesticides by 2030

COM(2020) 381 final 20.05.2020

Yeasts as Biological Control Agents (BCAs)

- Adapted to the fruit microenvironment (high sugar concentration, high osmotic pressure, low pH)
- Tolerant to different conditions (low T, desiccation, wide variations in RH, low oxygen, pH variations)
- No production of allergens or mycotoxins
- Simple nutritional requirements to colonize host surface for long periods

AIMS OF THE WORK

 Evaluation of the effectiveness of treatments with antagonistic yeasts on nectarines to control brown rot caused by *Monilinia fructicola*

✓ Evaluation of the effect of the treatments on the fruit quality and on the fruit microbiome

EXPERIMENTAL SETUP

Screening tests *in vivo* and *in vitro*

Quality analyses

Microbiome analysis

Identification of the most effective BCAs Efficacy test

Screening test in vivo

Evaluation of the efficacy of treatments with **14 yeast strains** to control brown rot

17 treatments:

4 treatments with the cell suspensions of the yeasts

Chemical control (fludioxonil)

- Inoculated control
- Healthy control

Microbiome analysis

Treatments with yeasts (10⁸ cells/mL) on wounded nectarines

Inoculation of *M. fructicola* (10⁵ conidia/mL) on wounded nectarines

Storage at 1 ± 1 °C for 18 days Shelf-life at 24 \pm 1 °C for 5 days

Screening tests

Efficacy test

Quality analyses

3 strains selected for the second test:

- MS
- FR4A
- AP47

The average diameter of rots developed was **significantly lower** compared to the inoculated control **for all the tested yeasts**

Screening test in vitro

Dual culture assays

AP47

- FR4A
- MS

Yeast strain
AP47
FR4A
MS

Control

AP47

FR4A

BCA Identification

Microbiome analysis

Mycelial inhibition (%)

39.2 ± 6.0 a 48.5 ± 1.6 b 44.4 ± 5.5 ab

Efficacy test in vivo

Evaluation of the efficacy of the most effective treatments in the screening test to control brown rot in semi-commercial conditions

6 treatments:

- **3 treatments** with the yeast cell suspensions
- **Chemical control** (fludioxonil)
- Inoculated control
- Healthy control

Microbiome analysis

Inoculation of *Monilinia fructicola* by dipping in the conidial suspension (10⁴ conidia/mL)

Treatments with BCAs by dipping in the cell suspensions (10⁸ cells/mL)

Storage at $1 \pm 1 \degree C$ for 28 days Shelf-life at $25 \pm 1 \degree C$ for 4 days

After **28 days of storage**, rot incidence for all treatments was significantly lower than for inoculated control

MS treatment was the most effective, with a rot incidence comparable to the chemical control

BCA Identification

Microbiome analysis

After **4 days of shelf-life,** rot incidence for all treatments was significantly lower than inoculated control

No treatment was still comparable to fludioxonil

BCA Identification

Microbiome analysis

Rot agents on nectarines after 4 days shelf-life

Quality analyses

Firmness
Total Soluble Solids
Titratable acidity

All the tested treatments did not significantly affect fruit quality

BCA Identification

Microbiome analysis

Efficacy test

Quality analyses

Identification of the most effective BCAs

Microbiome analysis

AP47 = *Metschnikowia fructicola*

FR4A = Aureobasidium pullulans

MS = Metschnikowia pulcherrima

Microbiome analysis

Evaluation of the effect of the treatments on the fruit fungal microbiome

1. Sampling

Epiphytes and **endophytes** sampling:

- healthy control
- 3 time-points:
- Harvest
- End of storage

2. DNA extraction

- treatments with the yeast strains - chemical control (fludioxonil) - inoculated control

End of shelf-life

3. Sequencing of the ITS2 region and metabarcoding analysis

Efficacy test

.

Epiphytes

Treatments with *Metschnikowia* spp. (MS and AP47) had lower richness compared to the chemical control

Endophytes

Treatment with MS had a significantly lower richness than healthy and chemical controls

Treatment Healthy control Inoculated control MS FR4A FR4A Fungicide control

Alpha diversity

Treatment

Screening tests

Shannon entropy

Efficacy test

Epiphytes

Treatments with *Metschnikowia* spp. (MS and AP47), had lower richness than fruits at harvest

Endophytes

Lower richness of MS treatment compared to harvest

Treatment Healthy control Inoculated control MS FR4A FR4A Fungicide control

Alpha diversity

Sampling time

Efficacy test

Beta diversity

Multivariate permutational analysis of variance showed that treatment, tissue and sampling time had a statistically significant effect on the microbiome composition

Treatment had the highest impact on the total variance (43%), compared to the tissue (13.6%) and sampling time (2.8%)

PCoA plot reflects the relative importance of treatments in partitioning variance.

Fungal microbiota - overall overview

Compositional analysis - Epiphytes

- Significant development of *Metschnikowia* spp. in MS and AP47 treatments both during storage and shelf-life
- Significant presence of **Geotrichum** spp. in all controls at
- Presence of **Penicillium** spp. in the healthy and chemical

Quality analyses

Compositional analysis - Endophytes

Presence of Metschnikowia spp. at harvest. Significant development in MS and AP47 treatments both during

Development of *Monilinia* spp. and *Penicillium* spp.

Presence of **Geotrichum** spp. at harvest. Significant

Conclusions

- Treatments with antagonistic yeasts were effective against *Monilinia fructicola* on nectarines in storage. Efficacy of MS strain comparable to the chemical treatment
- No significant effect on fruit quality parameters
- Yeasts occupy the ecological niche of *Monilinia* and of other pathogenic genera (*Penicillium*, *Geotrichum*)

Treatments with antagonistic yeasts could represents a promising tool for reducing post-harvest losses preserving the fruit quality

Pre-harvest application

Acknowledgements

DISAFA

Dipartimento

Scienze Agrarie, Forestali e Alimentari

Davide Spadaro Marco Garello

Thank you for your attention

