

Antifungal Edible Coatings for Postharvest Disease Control and Quality Maintenance of Fresh Fruits

Lluís Palou, María B. Pérez-Gago

Postharvest Technology Center (CTP) Valencian Institute of Agrarian Research (IVIA)

E-mail: palou_llu@gva.es http://www.ivia.gva.es

ivia

Institut Valencià d'Investigacions Agràries Centre de Tecnologia Postcollita (CTP)

Outline

- Natural antifungal edible coatings
- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Effects on fruit quality and physiological behavior

Outline

- Natural antifungal edible coatings
- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Selects on fruit quality and physiological behavior

ALTERNATIVE FUNGICIDE-FREE STRATEGIES TO CONTROL POSTHARVEST DECAY

Alternative postharvest antifungal treatments

- ▶ Physical treatments
- ↘ Biological treatments
- ▶ Low-toxicity or low-risk chemical treatments
 - Natural compounds
 - Food additives and GRAS compounds
 - Disease resistance inducers
 - Antifungal edible coatings

Antifungal edible coatings

Edible coatings: regulation of physiological responses of fresh produce during postharvest storage

Regulation of water vapor exchange: fruit transpiration
Regulation of gaseous exchange (CO₂, O₂): fruit respiration

- Antifungal edible coatings
 - Increased functionality: double function (physiological, pathological)
 - Replace conventional postharvest waxes formulated with synthetic chemical fungicides

Antifungal edible coatings

- □ Natural: Chitosan, *Aloe* spp. gels,...
- Synthetic: composite films and coatings
 - Hydrocolloid and lipid matrixes formulated with antifungal ingredients

Foodwastop

Outline

- Natural antifungal edible coatings
- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Selects on fruit quality and physiological behavior

FoodWaStop

Chitosan

- Edible natural biopolymer with antimicrobial activity
- Deacetylated derivative from chitin (exoskeletons of crustaceans)
- Approved as basic substance
- Tested alone or amended with other antifungal ingredients (mostly essential oils)
- Chitosan-based nanoemulsions and nanocomposites also obtained
- Mono or multilayer applications

Natural antifungal edible coatings

Aloe spp. gels

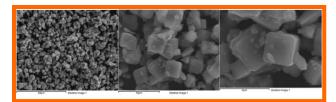
- □ *Aloe vera* is the most important species
- Gel obtained from extracts of leaf pulp
- Coating properties and proved antifungal activity
- Tested alone or in combination with other antifungal ingredients (essentials oils, ...)

FoodWaStop

Outline

- Natural antifungal edible coatings
- □ Synthetic antifungal edible coatings
 - **Solution** Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Selfcts on fruit quality and physiological behavior

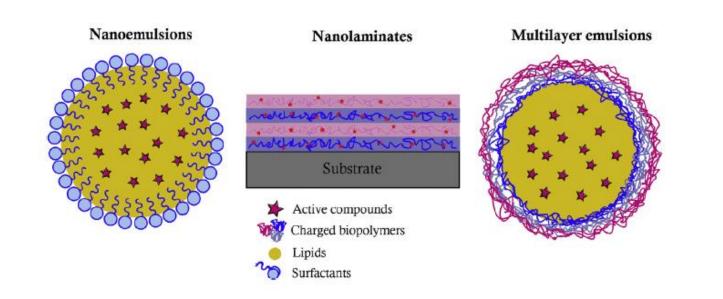
Types of coating matrixes


- Hydrocolloids
 - Polysaccharides: HPMC, CMC, gums, starch, pectins,...
 - Proteins: whey, casein, pea, soy,...
- Lipids: natural waxes, mono-, di-glicerids, fatty acids,...
- Composite: hydrocolloids + lipids

Types of coating matrixes

- Hydrocolloids
 - Polysaccharides: HPMC, CMC, gums, starch, pectins,...
 - Proteins: whey, casein, pea, soy,...
- Lipids: natural waxes, mono- or di-glicerids, fatty acids,...
- Composite: hydrocolloids + lipids
- Minor ingredients: emulsifiers, plasticizers,...
- Specific carriers of antifungal ingredients
 - Through impregnation or encapsulation
 - Seolites, β-cyclodextrin, lecithin, Arabic gum,...

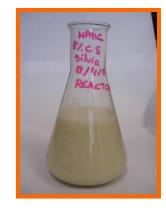
Antifungal ingredients: Types


- □ Food additives and GRAS salts (Na, K, NH₄,...)
 - Organic salts: sorbates, benzoates, paraben, silicates,...
 - Inorganic salts: bicarbonates, carbonates,...
- Natural compounds: essential oils, plant extracts,...
- Antifungal proteins and peptides
 - Bacteriocins, lysozyme, nisin,...
- Metal-based nanoparticles
 - Metals: Ag, Au,...
 - Sides: ZnO, SiO₂, TiO₂, Al₂O₃, Fe₃O₄, Fe₂O₃,...
- Biocontrol agents: antagonistic microorganisms

Antifungal ingredients: Incorporation

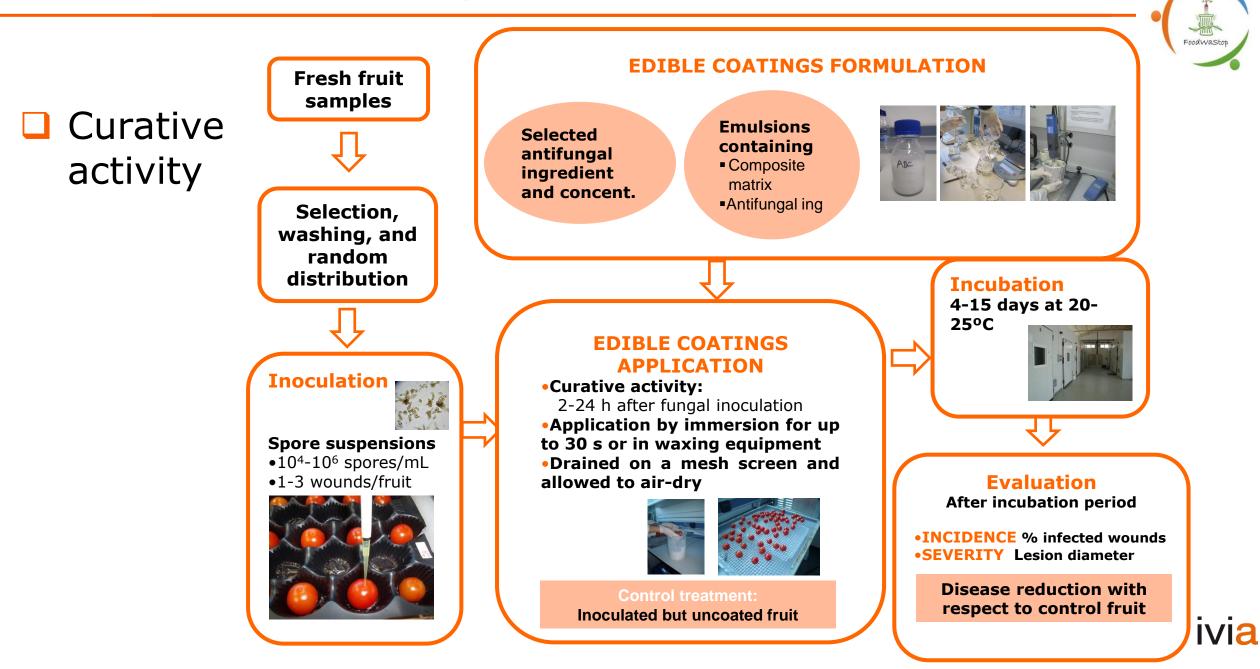
- Amended, imbibed
- Impregnation of solid particles
- Microencapsulated or nanoencapsulated
- Multilayer nanolaminates: layer by layer technique

Outline


- Natural antifungal edible coatings
- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Selfcts on fruit quality and physiological behavior

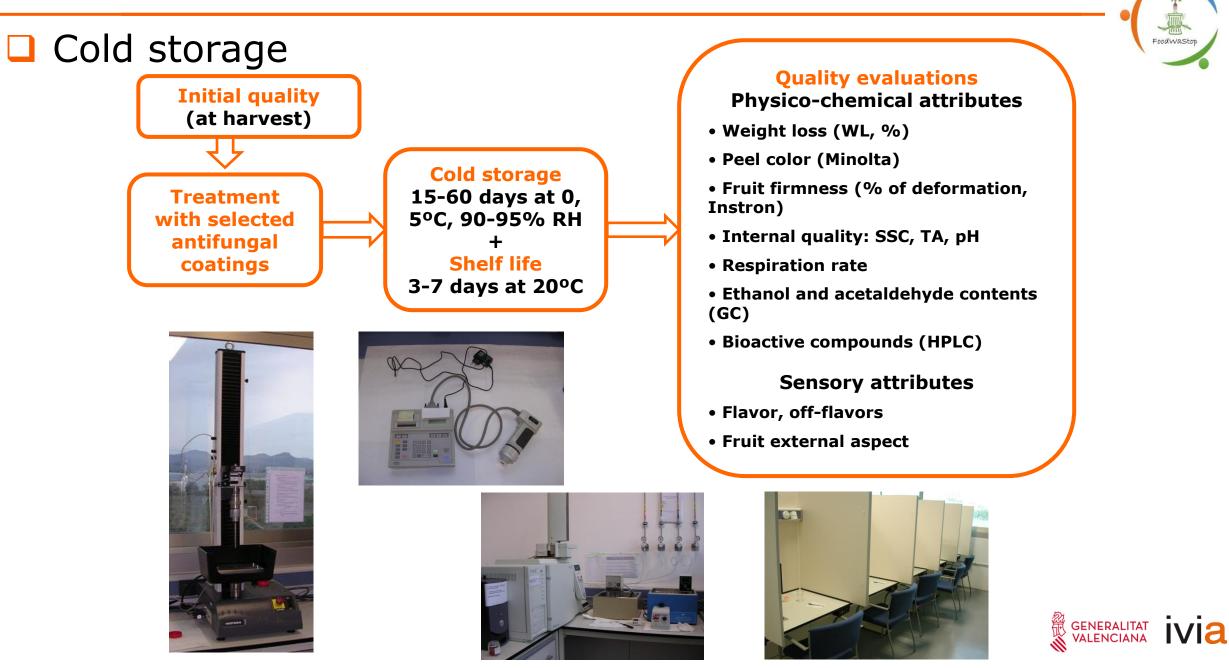
Preparation of emulsions

- Incorporation of antifungal ingredients at selected concentrations into hydrocolloid-lipid composite emulsions
- Example: emulsions prepared with:
 - Aqueous solution HPMC
 - Lipid: beeswax (BW)
 - Glycerol (plasticizer)
 - Oleic acid (emulsifier)
 - Tween 80 (wetting agent)
 - Total SC = 6-10% wb
- Samples homogenized (Ultra-Turrax)
 - (98°C; 1 min 12,000 rpm; 3 min 22,000 rpm) 25 min cooled under agitation


0% LIPID (25% BW - 25% SHELI

Outline

- Natural antifungal edible coatings
- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Selects on fruit quality and physiological behavior



Introduction

Natural antifungal edible coatings

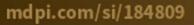
Outline

- Synthetic antifungal edible coatings
 - Coating matrixes
 - Antifungal ingredients
- Evaluation of antifungal edible coatings
 - Preparation of emulsions
 - In vivo disease control ability
 - Seffects on fruit quality and physiological behavior

Funding

an Open Access Journal by MDPI

Chitosan and Other Edible Coatings with Antimicrobial Activity: Synthesis, Properties and Horticultural Applications II


Guest Editors

Dr. María B. Pérez-Gago, Prof. Dr. Lluís Palou

Deadline 20 May 2024

Special sue

Thanks for your attention!!

Lluís Palou, María B. Pérez-Gago

Postharvest Technology Center (CTP) Valencian Institute of Agrarian Research (IVIA)

E-mail: palou_llu@gva.es http://www.ivia.gva.es

